
NASA-CR-203183
/'v?7,;;;>. -:_

C_, 77)'

, i,.::._

o

, • f _I ")

Paradigms for the Shaping of Surfaces in a
Environment

Steve Brysont

RNR Technical Report RNR-92-012, January 1992

Virtual

N/ A
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

ARC 275a (Feb 81)

Paradigms for the Shaping of Surfaces in a Virtual
Environment

Steve Brysont

RNR Technical Report RNR-92-012, January 1992

Applied Research Branch, Numerical Aerodynamics Simulation Division
NASA Ames Research Center

MS T045-1
Moffett Field, Ca. 94035

bryson@nas.nasa.gov

Abstract

This paper describes several paradigms for the directly manipulating a surface in computer graphics. The surface
is considered as a collection of points in three-dimensional space which define a surface. These points may be
the vertices of polygons, the control points of splines, and so on. Three paradigms are described and evaluated:
direct grabbing of the surface at a single point and moving a neighborhood of that point; pushing on the surface
with a tool; and pushing on the surface with a model of the user's hand. These paradigms are based on a
spatially weighted transformation. This transformation is based on a 'bump' weight function on the surface
which is shaped and placed by the user. Construction of the bump function is described and the definition of the
weighted transformation is described. The use of the weighted transformation in each paradigm is also described.
These paradigms are implemented on a virtual environment system based on a Fake Space BOOM for display
and a VPL Dataglove Model II for manipulation. The computation and rendering platform is a Silicon Graphics
380GT/VGX.

I" Employee of Computer Sciences Corporation. Work supported under government conlxact NAS 2-12961

Paradigms for the Shaping of Surfaces in a Virtual Environment

Steve Bryson

Computer Sciences Corporation/

Applied Research Office, Numerical Aerodynamics Simulation Division
NASA Ames Research Center, MS T045-1, Moffett Field, Ca. 94035

Abstract

This paper describes several paradigms for the direct
manipulation of a surface in computer graphics. The
surface is considered as a collection of points in three-di-
mensional space. These points may be the vertices of
polygons, the control points of splines, and so on.
Three paradigms are described and evaluated: direct
grabbing of the surface at a single point and moving a
neighborhood of that point; pushing on the surface with
a tool; and pushing on the surface with a model of the
user's hand. These paradigms are based on a spatially
weighted transformation. This transformation is based
on a "bump" weight function on the surface which is
shaped and placed by the user. Construction of the
bump function and the definition of the weighted trans-
formation is described. An interface for these paradigms
in a virtual environment is also described.

Fig 1: An example surface made with the interface de-
scribed in this paper.

1: Introduction

This paper describes several paradigms for manipu-
lating the shape of computer generated surfaces in vir-
tual environments. The methods suggested enable a
user to use natural hand motions to create complex and
irregular computer-generated shapes (fig° 1)o Three
paradigms are described and evaluated: direct grabbing
of the surface at a single point and moving a neighbor-
hood of that point; pushing on the surface with a tool;
and pushing on the surface with a model of the user's
hand. These paradigms are based on a spatially
weighted transformation, which is based on a 'bump'
weight function. The value of the weight function at a
point is defined as a function of the distance of that
point from some selected point or set of points. It is
the choice of the definition of distance and how the se-
lected points are specified that distinguishes the different
paradigms.

1.1: Purpose and Motivation

Virtual environments are a powerful new way of

approaching computer graphics and user interfaces
[2][3]. The problem of manipulating and shaping sur-
faces in virtual environments is as old as the idea of vir-
tual environments. The goal of presenting the user
with a virtual surface and allowing the direct manipula-
tion of that surface by the user's hand is an obvious
one. It is unclear, however, what the details of such an
interface would be. A surface is a collection of points,
and the user's hand can also be thought of as a collec-
tion of points. The use of the hand to shape the surface
is, at the algorithmic level, some map from the set of
points in the user's hand to the set of points in the sur-
face. Many such maps are possible, and so the problem
is, in general, very complex. There have been several
approaches to this problem using spline-based concepts
[4][8] and physical models [9]. This paper describes an-
other approach to this problem. This approach has the
advantage that it allows manipulation of groups of arbi-
trary points in space, without requiring underlying data
structures. These points can be considered as the con-
trol points of splines, or as defining surfaces directly.

Several different interfaces to this approach are prco
sented.

In the paradigms for surface shaping described in
this paper, the desired intuition is that the surface, act
like an infinitely stretchable material. We are inten-
tionally avoiding defining the surface via some physical
model to allow the user great versatility in manipula-
tion. The manipulation should be natural in the sense
that when a point on the surface is moved via some
transformation, other points on the surface follow the
motion in a way reminiscent of putty. We present and
discuss three such paradigms for the manipulation of a
surface:

Fig 2: The grabbing paradigm.

Grabbing: selecting a single point of the surfaces s-lx_ci-:
fled by the l_sition of the user's hand, and
moving a predefined neighborhood of that
point rigidly with the movement of the hand.
The points outside this surface, move less and
less the further away they are, until beyond
some predefined distance on the surface the
points do not move at all (fig. 2).

Pushing: Pushing the points of the surface around with
a virtual tool of some predefined shape. The
position of the tool follows the user's hand
(fig. 3).

Kneading: Pushing the points of the surface around
with a virtual hand model which precisely fol-
lows the motion of the user's hand. This push
can be based on the entire hand shape or the
position of the fingertips (fig. 4).

The kneading paradigm is really a version of the
pushing paradigm in which the virtual tool is the model
of the user's hand. The external interface to the knead-

ing paradigm is, however, sufficiently different from
that of the pushing paradigm that it will be treated sepa-
rately.

Note that it is a discrete set of points on the surface
that is manipulated. The surface is treated as a collec-
tion of points with connectedness, and some subset of
these points is moved during the manipulation. The
surface is rendered using the points by either treating
these points as the vertices of polygons, control points
of splines, or some other rendering method. The con-
nectedness of the points determines the topology of the
surface.

Fig 3: The pushing paradigm. Fig 4: The kneading paradigm.

r-

While the basic idea of the points moving near the
hand is an obvious one, the user may also wish for
more exotic and nonqocal possibilities. These may in-
clude grabbing the entire edge of a surface, moving a
ring on the surface around the point grabbed (without
moving the center of the ring), or moving the entire
surface as a rigid body. In general, there may be situa-
tions where moving an arbitrary subset of the surface is
desired. The method described in this paper allows in
principle for all of these possibilities, and a limited im-
plementation with many of these features will be deo
scribed.

The system described in this paper uses concepts
that have been dLscussed by Barr [1] and Parent [7]. Barr
anticipated the use of spatially variable transformations,
and Parent anticipated the demand of manipulating sur-
faces as stretchable material.

While the method described in this paper is dis-
cussed in terms of the manipulation of two-dimensional
surfaces in three-dimensional space, the generalization
to higher (or lower) dimensions is straightforward.

1.2 Brief Description of the Algorithm

We now summarize the algorithm behind the spa-
dally weighted transformation. The intuition behind
the paradigms described in this paper is to allow the
user to 'reach out' and 'grab' a virtual surface with a
glove, and as the user moves the glove:

a) some specified region of the surface moves pre-
cisely as indicated by that device,

b) some other specified region of the surface does
not move at all
and

c) the rest of the surface nicely interpolates between
these two regions (figure 5).
This system treats the surface as a collection of vertices
with connectedness, and def'mes a transformation T on
these vertices via some input device. A smooth mask
m is generated which is equal to 1 in some specified re-
gion where the vertices will be transformed by T, 0 in
some other specified region where the vertices will not
be transformed at all, and some number between 0 and 1
everywhere else, so that these remaining vertices will be
transformed by m*T.

In effect, we eae defining a weighting function re(v)
on each vertex v such that 0 _<_m(v) A 1. A weight
functionwhichhascontinuousderivativestoalloxde_s

(i. e. is smooth) everywhere except for a oneMi_sen
sional curve (where the second derivative is discondnuo
ous) will be used. This means that in practice, sh_ce
the probability of a vertex falling on this curve is z,_),
the transformations on the vertices will be smooth ev-

erywhere. While many other weight functions that z_:e
less smooth will be similarly well behaved in pracAicc,
we have chosen one that a) has a nice shape, b) i_ al,.
mostsmooth, and c) is not too time consuming to
compute (A similar function that is smooth everywhere
is defined in terms of integrals which must be evaluated
numerically).

The value of the weight function at a vertex is de-
termined by the distance of that vertex from some speci-
fied set. The nature of this set and the detimition of dis-
tance dependontheinteraction paradigm being used.

In the grabbing paradigm, a 'grabbed point' on _he
surface is defined, and the weight function on any other
point of the surface is determined by its distance from
the grabbed point along the surface° In this way _e
weight function is guaranteed to be a local function on
the surface, even in the case of self-intersection of the
surface. This problem will be discussed in more detail
in section 2.2.

In the pushing paradigm, a virtual push tool is de-
timed in three-dimensional space. The value of the
weight function at a point on the surface is then a func-
tion of the three-dimensional distance from that point to
the push tool. In the example considered in this paper,
the push tool is a single point which follows the posi-
tion of the user's hand.

In the grabbing paradigm, the weight function is
defined much like the case of the pushing paradigm, ex-
cept that now the tool is a dynamic model of the user's
hand. This model has fingers that bend to match the
state of bend of the user's hand. Thus this paradigm in-
volves a push tool that changes shape. In the examples
considered hexe, the distance used to define the value of
the weight function may be the distance to the closest
point on the hand model or the distance to the closest
fingertip.

Fig 5: Three stages in the manipulation of a surface, involving both translation and rotation.

Oncea single manipulation of the surface has been
performed, the vertices defining the surface are replaced
by their images under the masked transform described
above, producing a new surface which may again be
manipulated. In this sense, this system is iterative: the
surface is replaced by its manipulated image°

1.3 The Virtual Environment Hardware

The display component of our virtual environment
is the boom-mounW_l display. This boom supports two
small CRTs on a counterweighted yoke attached
through six joints to a base. It is manufactured by Fake
Space Labs of Menlo Park CA, and fashioned after the
prototype developed earlier by Sterling Software, Inc. at
the VIEW lab at NASA Ames Research Center [6].

The boom is an alternative to the popular head-
mounted LCD display systems that were pioneered at
the VIEW lab [2] and are now widely used. The main
advantage of the boom is that real CRTs can be used for
display in spite of their mass, since none of the weight
of the displays is born by the user. CRTs have much
better brightness, contrast, and resolution than standard
liquid crystal displays.

The CRTs are mounted on the "head" of the boom,
along with the wide field optics and two repositionable
handles. Six degrees of freedom of motion are provided
by the the gimbals and joints of the boom, in a smooth
and force-flee manner. Within a very wide range, the
user can continuously change the three dimensional po-
sition and orientation of the head of the boom. The po-
sition and orientation information is based on the the
current state of the six joints angles. These angles are
sensed by optical encoders at the joints and fed into a

microprocessor in the base of the boom, which form_ _:
the information and sends it out an RS232 po_ l_Io
magnetic field emitters or sensors are used, and h_ _
the boom information is precise, repeatable, and in.sen. :
sitive to the electromagnetic environment. Currently_
the monitors on the boom are monochrome with NTSC
resolution. The boom accepts two RS170 video sig-
nals, one for each eye. An upgrade to the lx_m with
1280 x 1024 resolution and two color channels is ct_r*

renfly under development.
In addition to the boom head position and orient_

tion, the user's hand position, orientation, and finger
joint angles are sensed using a VPL dataglove rMmodel
II, which incorporates a Polhemus 3Space m tracker.
The finger joint angles are combined and interpreted as
gestures by a low level of the software. These gestures
are used to send commands to the software. The t'mger
joint angles are used to construct the virtual hand model
in the kneading paradigm.

The computational and rendering power for our vir-
tual environment is provided by a Silicon Graphics Iris
380 VGX system. This is a multiprocessor system
with eight 33 MHz RISC processors (MIPS R3000
CPUs with R3010 floating point chips). The perfor-
mance of the machine is rated at approximately 200
Million instructions per second (200 VAX MIPS) and
37 million floating point operations per second (37 64-
bit linpack MFLOPS). Our system currently has 256
MBytes of memory.

The VGX has parallel hardware rendering pipelines.
The rated graphics performance of our system is around
one million 3D triangles transformed, clipped, pro-

jected, lit, shaded, and displayed per second. The system

TM
Fake Space BOOM

SGI 380
VGX

Red and blue video signals

TM
VPL DataGlove

Boom viewer position and orientation

Glove position and orientation

Fig 6: The hardware configuration of the virtual environment system. Position and orientation data from the
glove and boom are sent to the Silicon Graphics 380 VGX workstation. This data is used to compute and render
various objects in the environment. The rendered stereo images are sent to the boom as video signals.

hasover 200 bits per pixel of frame buffer memory.
We make use of only 48 bits per pixel - two buffers
each of eight bits of red and eight bits of blue (double
buffering), and 24 bits of Z-buffer.

The configuration of our system operating in vir-
tual reality mode is drawn in figure 6.

1.4 The User Environment

The virtual environment used to test the paradigms
described in this paper has several features which en-
hance the usability of the system. A virtual floor made
of cross-hatched lines gives a spatial orientation cure.
This greatly enhances the illusion of depth when view-
ing the virtual surface. A three-dimensional cross

shaped cursor always tracks the user's hand. Except
when using the kneading paradigm, this is deemed more
desirable than the conventional virtual hand model be-
cause it does not obstruct the user's view and, less im-
portantly, for speed of rendering. The rendering of the
surface which the user manipulates is done in a check-
ered fashion, as this gives good cues to the shape of the
surface. This extra cue was found to be very useful in
the perception of the detailed shape of the surface.
Other options are available to the user. In addition to
shaping the surface, the user can, via various gestures,
move, orient and scale the surface in virtual space as de-
sired. Several surfaces can be inserted into the envi-
ronment and manipulated independently. The resolution
of the surface, the number of vertices in the definition
of the surface, can be changed on the fly. Finally, each
of the paradigms described in this paper can be accessed
at any time by the user.

2: The Spatially Weighted Transfor-
mation

2.1 Definition of the bump weighting

function

When the user manipulates the surface, three dis-
joint subsets of the surface need to be specified:

a) The part of the sl_'ace that moves rigidly accord-
ing to the user's input

b) The part of the surface that does not move at all
(possibly empty)

c) The complement of the above two subsets,
where the motion is interpolated (possibly empty)
These subsets will be supplied with a weighting funco
tion, defined relative to these subsets, which will con°
trol the motion with which the points in these subsets
move. The motion will be defined via a transformation
T, and the weighting function will m_altiply T to define
a new transformation T' on each vertex. Thus a weight-
ing function is needed that is constant and equal to one
in some set of vertices corresponding to subset a), is
constant and equal to 0 outside some larger set of ver-
tices corresponding to subset b), is monotonically de-
creasing from 1 to 0 on the vertices corresponding to
subset c), and is smooth° A function which is versatile,
easy to control, and has a nice shape is the bump func-
tion.

The construction of this function is based on the
function

0 x<0f(x) = e_ (x.2) x>0

f(x) has well-defined derivatives to all orders at 0 (its
derivatives are of the form (polynomial in
x)*(polynomial in (1/x))*f(x), and f(x) will go to zero
faster than the polynomial in (l/x) diverges as x goes to
zero) [5, exercise 1.1.18]. This function is used to con-
struct the smooth step function

.... L_

0

x=a

Fig 7: The basic step function
s(x, a).

c-r0 c-rl

rl

r0

c+rl

0

c+r0

Fig. 8: The bump function, showing the
parameters c, rl, r0 which define the bump.

s(x, a) = o() x<_o
X o2

e- O<x<a
1 x>_a

which has continuous derivatives to all orders at x=O

(fig. 7). At x=a, where a is any positive number, this
function has discontinuous second and higher defiva-

lives. By translation, the function

step(x, tO, rl) = s(x-to, d-to)

is a function that is equal to 0 for x < to, equal to 1 for

x > rl, and is smooth between r0 and rl, where 0 < to
< rl. Finally, one can define the bump function, given

by

step(x, c-t0, c-rl) x < cbump(x, c, r0, rl) = step(2c-x, c-to, c-rl) x __ c

where c is any number which gives the center of the

bump, rl is the distance from the center within which
the bump is equal to 1, and tO is the distance from the
center beyond which the bump is equal to 0 (fig 8):

The function bump(x, c, r0, rl) defines a bump

which is controlled by three parameters: c, which is
where on the real line the bump is centered; r0, the
width of the nonzero parts of the bump; and rl, the

width of the plateau where the bump is constant and

equal to one. The task of controlling the bump is the
taskofcontrollingthesethreeparameters.

Inthisway, thebump functioncan specifythede-

shed subsetsofthesurfacewithonly threeparameters.

2.2: Definition of the vertex transforma-

tion for the local manipulation of a sur-

face.

._ex 0 0)
T'(v) = bval[v] scaley 0 R +

0 scalez

;:!

The bump function defined in se..fion 2ol is vet_,
useful for specifying the way in which a s_fac¢ is ma-

nipulated. Intuitively, when a user specifies that a sur-
face has been grabbed at a particular point p and moves
the controller to define some wansfo_nation T, then

surface close to p should be fully t_nsfomled by T,
moving with the controller. The effec_ of the transfo_o
marion should fall off gradually with increasing dista_x-_

from p on the surface, until far away, lhe surface do_
not move at all. This is accomplished by ttsing _1_

bump function with x = distance from p and taking c to
be zero. At each vertex of the surf_e, the transfom_v
tion at that vertex is defined as:

T(x) = bump(x, c, tO, rl)*T + (1-bump(x, c, r0, rl))*Id

where x is the distance of the vertex from p and Id = the

identity transformation. Where bump(x, c, tO, rl) = 1,

T(x) = T, and where bump(x, c, tO, rl) = 0, T(x) = Id.
Note that T need not be a linear transformation, but c_

be any map from three-dimensional space to threeMi-
mensional space.

Examples of transformations that would be used in

a typical manipulation application include translation,
rotation, and scaling. These transformations would be
controlled with mouse and keyboard combination com-
mands. In this case, when the user indicates that a ver-

tex p (with components (px, py, pz)) on the surface is

to be grabbed, the value of the bump function centered
at p is computed at each vertex v of the surface and is
stored in the array bval[v]. Then, by moving the input
d_vice, the user indicates the translation (tx, ty, tz), ro-
tation R, and scale transformation (scalex, scaley,

scalez) that are to be applied to the surface (fig. 9). The
transformation at each vertex v is weighted by the value

in bval(v) at that vertex as follows:

i-bval[v] 0 0)
1-bval[v] 0
0 1-bval[v]

Fig 9: Thr_ basictransformations: translation, rotation, and scaling. The scaling is performed after a

translation.

This transformation is then applied to the current
components of vertex v = (vx, vy, vz) as

 xpx) 1=T'(v) [vy-py + [py+ty*bval[v]
kvz' \vz-pz k,pz+tz*bval[v]

Thus the transformations are applied to each vertex
centered around p. In particular, the rotations and the
scaling occur centered at p.

There is one subtlety in this scheme: the definition
of distance on the surface. One could use the euclidean
three-dimensional distance between the vertices, but
there are cases, such as in the grabbing paradigm, when
one wishes that the manipulation is local with respect
to the surface, not how the surface is embedded in three-
dimensions. This is a problem, for example, when the
surface is folded over on itself, say folded corner to cor-
ner. If the three-dimensional distance between points is
used, grabbing one comer will cause the opposite comer
to move. The points in the center of the surface, which
we usually call closer to one comer than the opposite
comer, will move less, and the effect could be that we
have grabbed the two comers at once. This is not what
is intuitively meant by "grabbing the surface at a
point".

In this case, what is needed is a definition of dis-
tance along the surface that is both computationally rea-
sonable and respects the topology of the surface. The
solution to this problem is to define a 'prototype sur-
face' which contains vertices and connectedness that are
in a 1-1 correspondence with the manipulated surface,
and so has the same topology as the manipulated sur-
face. The distance between two points on the manipu-
lated surface is def'med as the three-dimensional distance
between the corresponding two points on the prototype
surface. For example, if the manipulated surface has the
topology of a sphere, the prototype surface will be the
geometrical sphere. If the manipulated surface has the
topology of a toms, the prototype surface will be the
geometrical torus.

When the parameter c in the bump function is
taken to be non-zero, then the weight function will
form a ring about the point p. This allows for interest-
ing non-local manipulations of the surface. If c > r0,
there will be an area in the center of the ring, centered at
P, that will not move at all.

Note also that the definition of T'(x) can be general-
ized to any weight function. The bump function is
lreated specially because its parameters correspond to
those aspects of the manipulation over which we desire
the most control, namely the size of the region of the
surface effected.

2.3 Implementation and Control Interface

The system deso'ibed above was hnplemented based
on parameterized two_dimensional surfaces in three di-
mensions. The vertices on the surface are defined by
three functions (called components of the vertex) of two
parameters (called paranaeters of the vertex). 'Ihe con_
nectedness of the surface is defined by the ordering of
the parameters_ and in fact the coordinates of a vertex are.
stored in arrays indexed by the parameters of that vertex°
Note that this implementation trivially extends to a pa._
rameterized surface of any dimension in a space of any
dimension, so the method described here can be used to
manipulate, tbr example° volumetric objects.

In an implementation of the theoretical structure
described in section 2 above_ three logically independent
tasks have to be performed, given a transformation to be
applied at that point:

- Define the shape of the bump weighting function on
the surface as a function of distance from some
point or set

- Compute of the weighting function for all vertices
on the surface

- Compute the weighted transformation of each vertex
in the surface.

The interface for the control of the shape of the ba-
sic bump function is given by drawing a graph of the
current bump function in virtual space (fig 10). By us-
ing various gestures, the user can change the values of
the corresponding parameters by moving the hand. The
position of the hand during these gestures continuously
determines the values of the bump parameters. During
this operation, as the bump is redef'med the graph is re-
drawn, giving the user feedback on the new shape of the
bump.

When the manipulated surface is initially defined,
the vertex components of the parameterized surface prior
to any deformation are stored in the array of 3D vectors
init[s][t]. These vertices form the prototype surface.
Once the user has indicated a vertex p, which is consid-
ered the grabbed vertex, the parameters of p, (ps, pt) are
determined. Then for all values of the parameters (s, t)
for which there are vertices, the value of the bump func-
tion are computed as bump(r, c, r0, rl), where r is the
euclidean three-dimensional distance from init[ps][pt] to
init[s][t]. In this way, if two vertices coincide on the
initial surface, they will be have the same bump value.
Thus they will transform identically and so always co-
incide. The value of bump(r, c, r0, rl) is stored in an
array bval[s][t] (with s and t appropriately converted to
indices), which was denoted as bval[v] in section 2.2,
and contains the values of the bump function for the
vertex with parameters (s, t).

The user must be given some indication of the
strength of the bump on the surface. The possibility of
exotic bump shapes (such as rings and radial modula-
tions) requires that the user have good feedback as to ex-
actly where on the surface the bump function will en-

able vertices to move. In the current implementation,

this problem was solved by coloring tile vertices on the
surface according to the value of the bump• The color

of each vertex is defined to be an interpolation between
two colors, using the value of the bump function at that
vertex as the interpolation parameter (fig 10).

In addition to the control over the shape of the

bump function described above, an ability to enrich the
shape of the bump was implemented by replacing the r

computed in the above paragraphs by r]f(O), where f(O)

is some (preferably periodic) function_ and 0 is an angle

parameter defined as arctan(ds/dt) where ds = ps - t, dt =
pt - t. In this way irregular, radial variations in the
bump can be easily implemented. In the author's imo

plementation, frO) is a simple ellipse with variable eco
centricity and phase. The interface to the eccentricity
and phase is either through gestures and hand position,
or via the mouse in a conventional screen environment.

3: Implementation and Evaluation of

the Paradigms

3.1 The Grabbing Paradigm

In the grabbing paradigm, the user indicates a point
on the surface as the grabbed point. Each vertex of the
surface is then assigned a weight determined by the dis,
tance of that vertex from the grabbed point and the cur-
rent values of the bump parameters. The distance in

this case uses the distance between two points 0n tl_

'prototype surface' as described in section 2.2. The
grabbed point is defined as the point on the surface cl_
est to the current hand position when the grab was inili*
ated. The user indicates that the surface is to be grab&xl

at the grab point by performing and hohfing a gestm_
As long a this gesture is held, the position and orieat_
tion of the hand determines the transformation T, which
which is used as described in section 2.2 to determine a
transformation at each point of the surface. In a simil_

way, another gesture uses the position of the hand to de-
termine T as a scale transformation. In this impleme_
tation, the hand is not actually touching the surface_
The transformation T is based on the position and orien-
tation offset of the user's hand position and orientati_
at the time the grab gesture is first executed.

This paradigm is least intuitive, but it allows

the most precise control over the shape of the surface
during manipulation. It has the advantage that the ma.

nipulations of the surface are direct, as ff one were grab-
bing the surface itself. The disparity caused by not ac-
tually grabbing the surface with the hand is quickly
overcome by learning. Further, any manipulation can
be accomplished with comparatively few concepts, all
of which involve the specification of the weight func-
tion on the surface. The surface in fig. 1 was drawn
with the grabbing paradigm. This paradigm also fits

well into a conventional mouse-screen environment.

• . , • " vironment. In each figure, the line drawing under the surface _a
F_g 10. The user s surface man|pulau.on en . _ ts are the handles that the user mov_ oo
graph of the bump funcuon as a mncuon of distance. The colored do
control parameters of the bump. The circle in the upper left allows the specification of radial distortions in the

• • bum function is non-zero. Left: The plane prior
ite area on the surface _s the regmn where the P lation upwards

bump. The wh • R_ hr The _urface after trans
to manipulation. Note the cursor surrounded by white area. g •
weighted by the bump function indicated by the white area in the upper left figure.

3.2 The Pushing Paradigm

In the pushing paradigm, a push tool is defined as a

point in three-dimensional space. The location of this
point is that of the user's hand as returned by the
Polhemus tracker. In this paradigm the distance used in
the computation of the weighting function for a vertex
is the three-dimensional distance from that vextex to the

push tool. The prototype surface is not used. To use
the push tool, the user makes and holds a gesture. The

push tool is then used to push points of the surface,
which move only when they are close enough to the
push tool to have a non-zero value of the weight func-
tion. Thus although the push tool is defined as a point,
it has a size which corresponds to the parameters of the
bump function. This is graphically displayed by nested
semi-transparent spheres (fig. 2). One of these spheres,
corresponding to the bump parameter r0, is rendered as a
skeleton. The other, inner sphere corresponds to the
hump parameter rl and is rendered as a semi-transparent
solid sphere. These spheres are semi-transparent so that
they do not block the user's view of the surface.

Care must be taken so that the surface appears to be
'pushed' by the push tool, rather than becoming 'stuck'

to it. This is a problem because while the push tool
acts on the surface, those points closer to the center of
the push tool than the bump parameter rl would move
rigidly with the push tool until the push gesture is re-
leased. This is not what pushing appears to do. The il-
lusion of pushing is accomplished by using the distance
from the push tool to the surface points when the push
gesture is first initiated to define the weighting function
on the surface. Thus when the push tool is backed off,
the points of the surface return to their pre-push posi-

tion.

The pushing paradigm has great intuitive appeal. It
is very reminiscent of the manipulation of real-world
tools with our hands. Generalizations of this paradigm
with static push tools of other shapes could produce

quite a powerful surface shaping tool set. Pushing,
however, does not gives as much control over the ma-

nipulation of the surface as does the grabbing paradigm.

3.3 The kneading Paradigm

The kneading paradigm is much like the push tool
paradigm, except that the push tool is now a skeletal
model of the user's hand. This model somewhat faith-

fully matches the position and orientation of the user's
palm and fingers, including the angle of bend of their
joints. As the hand tool is more than a single point,
there are several possibilities for a definition of distance.

In an attempt to shape the surface using the shape
of the fingers, the distance used to define the weight
function at a point on the surface is taken to be the dis-
tance to the nearest point on the hand skeleton. The
bump function is still used, so the effectj've shape of the

hand tool will be a collection of cylinders _round each
segment of the hand skeleton. In this case, the values
of rO and rl must not be too large_ or the shape of thi_,
hand would be losL Once the. weight functior_ on ti'_
surface is computed, the surface is pushed exactly as de-
scribed for the push tool in section 3.2 above.

There are several problems with the kneadin_
paradigm using the entire hand skeleton. The most se.-
rious problem is that the time to compute the distance
from every point on the surface to the segments of the
skeleton is prohibitively long. On our systern_ de-
scribed in section 1.3, fliis computation drops the framG
rate to unacceptably low levels, so that the system is
too sluggish for good hateracfion. There are other probo
lems, but they are generic to the kneading paradigm and
will be discussed at the end of this section.

Another approach that has been implemented is to
use the distance from the points on the surface to the

tips of the four fingers. This in effect is using four
push tools described in section 3.2, where the location
of each push tool is at the location of the user's finger
tips. This is further refined by considering only tho_
f'mgertips that are extended. This runs at a usable frame
rate, and is a rather enjoyable way to manipulate the
surf_e.

There are several problems with the kneading
paradigm which do not occur in the other two
paradigms.

• As the kneading paradigm is based on the position
of the fingers, while shaping with the hand one
cannot use gestures for control. Thus one is re-
quired to have other inputs, or to toggle gestures,
to enable and disable the pushing operation.
• While the versatility of using one or more fingers
is useful for quickly varying the size of the shaped

region, the standard VPL dataglove delivers only
the bends of two joints per finger. In particular the
separation of the fingers is not available. Thus
spreading one's fingers to change the shape of the
shaped region is not an option. This would be a
highly desirable feature.

• The most serious problem generic to the kneading
paradigm is that the manipulation of the surface
faithfully tracks the shape of the hand. Thus while
pushing the surface with the hand, one must be un-
usually attentive to one's hand position. This is
rather fatiguing, even for those user's highly expe-
rienced with glove operations. As the hand tires,
control over the manipulation is lost. Tactile feed-

back in the glove would be expected to help this
problem.
• Noise in the hand tracker becomes very significant
and annoying, especially noise in the orientation
data.

Thus from the point of view of precision and con-
trol, the kneading paradigm leaves a lot to be desired.

t__ Ctwa]

The kneading paradigm, on the other hand_ is the closest

to the goal of shaping surfaces in a virtual environment
"with one's bare hands". This is a very attractive goal,
and further development of the kneading paradigm is
warranted.

4: Conclusions

The paradigms discussed in this paper all, to some
extent, succeed in allowing a user to 'directly' manipu-
late a virtual surface. From the point of view of con-
trol, the grabbing paradigm is, at this stage of develop-
ment, the preferable paradigm. From the point of view

of intuitive power, the kneading paradigm is very attrac-
five. The kneading paradigm suffers, however, from se-

vere problems of control due to fatigue. The pushing
paradigm is somewhat of a compromise, but it does not
have the control of the grabbing paradigm.

There are times, however, when each of these

paradigms is appropriate. A system that allows the
quick selection of paradigms has proven to be very nice.
Further development of all three paradigms is, in my

opinion, clearly warranted.
There are several areas where the interface to the

specification of the weight function described in this
paper can be extended. The system described above is
built on the concept of a mask on the surface. The
bump function was used to define this mask because the

bump is relatively easy to specify, as it is defined in
terms of three parameters. As mentioned previously,
the concept of the mask on the surface can be general-
ized beyond the bump function. This would allow the

specification of arbitrary neighborhoods to be manipu-
lated. Generalizing the bump function in this way in-
troduces no new conceptual structure, but would involve
considerable development of the user interface.

Acknowledgements

The Author would like to thank his colleagues in
the Advanced Research Office of the NAS division at

NASA Ames for their many helpful comments and dis-
cussions, particularly Sam Uselton, Creon Levit, Mike
Yamasaki, AI Globus, Kyra Lowther, and Horst Simon.
Thanks also to Jeff Hultquist for help with Postscript
and John Krystynak for enthusiasm. Special apprecia-

tion goes to Profs. Andrew Hanson, Louis Kauffman,
and Louis Crane for being sources of inspiration and for

their very warm encouragement.

References

1 Barr, A., Global and Local Deformations of
Solid Primitives, Computer Graphics, Vol 17,

#3, July 1984, pp 21-30

5

Fisher, S. et. al., Virtual Environme_
Interface Workstations, Proceedings of ale
Human Factors Society 32nd Annual Meetim,
Anaheim, Ca. 1988 -_'

Fisher, S., Virtual Environments, Person_

Simulation and Telepresence, Implementin8
and Interacting with Real Time Microwortds.
Course Notes, Volo 29, SIGGRAPH 1989

Forsey, D., and Bartels, R., Hierarchical B-

Spline Refinement, Computer Graphics, Vol
22, #4, August 1988, pp 205-212

Guillemin, V. and Pollack, A.,Differential

Topology, Prentice-Hall, Englewood Cliffs,
NJ., 1974

MacDowall, I., Bolas, M., Pieper, S, Fisher,
S. and Humphries, J., Implementation and
Integration of a Counterbalanced CRT-based
Stereoscopic Display for Interactive Viewpoint
Control in Virtual Environment Applieafions"
Proceedings of the 1990 SPIE Conference on
Stereoscopic Displays and Applications, Santa
Clara, Ca. 1990

Parent, R., A System for Sculpting 3-D Data,

Computer Graphics, Vol 11, #2, July 1977,
pp 138-147

Sederberg, T. and Parry, S., Free-Form
Deformation of Solid Geometric Models,

Computer Graphics, Vol 20, #4, July 1986,

pp 151-160

Terzopoulos, D., Platt, J., Barr, A. and
Fleischer, K., Elastically Deformable Models,

Computer Graphics, Vol 21, #4, July 1987,

pp 205-214

